Advertisements
Advertisements
Question
Solution
\[\int \log_{10} x \text{ dx }\]
\[ = \int\frac{\log x}{\log 10}dx\]
\[ = \frac{1}{\log 10}\int 1_{} \cdot \text{ log x dx }\]
` " Taking log x as the first function and 1 as the second function " `
\[ = \frac{1}{\log 10}\left[ \log x \int\text{ 1 dx} - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\text{ 1 dx }\right\}dx \right]\]
\[ = \frac{1}{\log 10}\left[ \log x \cdot x - \int\frac{1}{x} \cdot \text{ x dx } \right]\]
\[ = \frac{1}{\log 10}\left[ x \log x - x \right] + C\]
\[ = \frac{1}{\log 10}\left[ x\left( \log x - 1 \right) \right] + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\text{ cos x cos 2x cos 3x dx}\]