English

∫ X + Sin X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
Sum

Solution

\[\int\left( \frac{x + \sin x}{1 + \cos x} \right)dx\]
\[ = \int\left[ \frac{x}{1 + \cos x} + \frac{\sin x}{1 + \cos x} \right]dx\]
\[ = \int\left[ \frac{x}{2 \cos^2 \frac{x}{2}} + \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right]dx\]
\[ = \frac{1}{2}\int x_I \cdot \sec^2_{II} \frac{x}{2}dx + \int\tan \frac{x}{2}dx\]
\[ = \frac{1}{2}\left[ x \cdot \frac{\tan \left( \frac{x}{2} \right)}{\frac{1}{2}} - \int1 \times 2 \tan \left( \frac{x}{2} \right)dx \right] + \frac{\text{ log }\left| sec \frac{x}{2} \right|}{\frac{1}{2}} + C\]
\[ = x \tan \left( \frac{x}{2} \right) - \frac{\text{ log} \left| \sec \frac{x}{2} \right|}{\frac{1}{2}} + \text{ log} \frac{\left| \sec \frac{x}{2} \right|}{\frac{1}{2}} + C\]
\[ = x \tan \left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 24 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int x e^x \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×