English

∫ X Sin X Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x \sin x \cos x\ dx\]

 

Sum

Solution

\[\int x\sin x \cdot \text{ cos x dx }\]
\[ = \frac{1}{2}\int x\left( 2 \sin x \cos x \right) dx\]
\[ = \frac{1}{2}\int x_{} \cdot \sin \left( 2x \right)_{} dx\]
\[\text{Taking x as the first function and sin 2x as the second function} . \]
\[ = \frac{1}{2}\left[ x\int\text{ sin 2x dx } - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx } \right\}dx \right]\]
\[ = \frac{1}{2}\left[ x \times \frac{- \text{ cos }\left( 2x \right)}{2} - \int1 \cdot \left( \frac{- \cos 2x}{2} \right)dx \right]\]
\[ = \frac{1}{2}\left[ \frac{- x \text{ cos
}\left( 2x \right)}{2} + \frac{\text{ sin } \left( 2x \right)}{4} \right] + C\]
\[ = \frac{- x \text{ cos } \left( 2x \right)}{4} + \frac{\text{ sin }\left( 2x \right)}{8} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 19 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×