Advertisements
Advertisements
Question
Solution
\[\int x\sin x \cdot \text{ cos x dx }\]
\[ = \frac{1}{2}\int x\left( 2 \sin x \cos x \right) dx\]
\[ = \frac{1}{2}\int x_{} \cdot \sin \left( 2x \right)_{} dx\]
\[\text{Taking x as the first function and sin 2x as the second function} . \]
\[ = \frac{1}{2}\left[ x\int\text{ sin 2x dx } - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx } \right\}dx \right]\]
\[ = \frac{1}{2}\left[ x \times \frac{- \text{ cos }\left( 2x \right)}{2} - \int1 \cdot \left( \frac{- \cos 2x}{2} \right)dx \right]\]
\[ = \frac{1}{2}\left[ \frac{- x \text{ cos
}\left( 2x \right)}{2} + \frac{\text{ sin } \left( 2x \right)}{4} \right] + C\]
\[ = \frac{- x \text{ cos } \left( 2x \right)}{4} + \frac{\text{ sin }\left( 2x \right)}{8} + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]