Advertisements
Advertisements
Question
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
Options
− xex + C
xex + C
− xe−x + C
xe−x + C
MCQ
Solution
− xe−x + C
\[\int \left( x - 1 \right)_I {e^{- x}}_{II} dx\]
\[ = \left( x - 1 \right)\int e^{- x} dx - \int\left\{ \frac{d}{dx}\left( x - 1 \right)\int e^{- x} dx \right\}dx\]
\[ = \left( x - 1 \right) \cdot e^{- x} \left( - 1 \right) - \int1 \cdot e^{- x} \times - 1 dx\]
\[ = - \left( x - 1 \right) e^{- x} + \int e^{- x} dx\]
\[ = \left( 1 - x \right) e^{- x} + \frac{e^{- x}}{- 1} + C\]
\[ \Rightarrow \left( 1 - x - 1 \right) e^{- x} + C\]
\[ = - x e^{- x} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int \cot^4 x\ dx\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]