English

∫ X 2 √ X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]
Sum

Solution

\[\int x^2 \sqrt{x + 2} \text{ dx  }\]
\[\text{Let x + 2 }= t\]
\[ \Rightarrow x = t - 2\]
\[ \Rightarrow dx = dt\]
\[\text{Now,} \int x^2 \sqrt{x + 2} \text{ dx }\]
\[ = \int \left( t - 2 \right)^2 \sqrt{t} \text{ dt }\]
\[ = \int\left( 4^2 - 4t + 4 \right) t^\frac{1}{2} \text{ dt }\]
\[ = \int\left( t^{2 + \frac{1}{2}} - 4 t^{1 + \frac{1}{2}} + 4 t^\frac{1}{2} \right)\text{ dt }\]
\[ = \int\left( t^\frac{5}{2} - 4 t^\frac{3}{2} + 4 t^\frac{1}{2} \right)\text{ dt }\]
\[ = \left[ \frac{t^\frac{5}{2} + 1}{\frac{5}{2} + 1} \right] - 4\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + 4\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{7} t^\frac{7}{2} - \frac{8}{5} t^\frac{5}{2} + \frac{8}{3} t^\frac{3}{2} + C\]
\[ = \frac{2}{7} \left( x + 2 \right)^\frac{7}{2} - \frac{8}{5} \left( x + 2 \right)^\frac{5}{2} + \frac{8}{3} \left( x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.10 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.10 | Q 1 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x \cos^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×