English

∫ X 2 ( X − 1 ) ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
Sum

Solution

We have,

\[I = \int\frac{x^2 dx}{\left( x - 1 \right) \left( x + 1 \right)^2}\]

\[\text{Let }\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{\left( x + 1 \right)^2}\]

\[ \Rightarrow \frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{A \left( x + 1 \right)^2 + B \left( x + 1 \right) \left( x - 1 \right) + C \left( x - 1 \right)}{\left( x + 1 \right)^2 \left( x - 1 \right)}\]

\[ \Rightarrow x^2 = A \left( x^2 + 2x + 1 \right) + B \left( x^2 - 1 \right) + C \left( x - 1 \right)\]

\[ \Rightarrow x^2 = \left( A + B \right) x^2 + x \left( 2A + C \right) + \left( A - B - C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 1 ...................(1)\]

\[2A + C = 0 ....................(2)\]

\[A - B - C = 0 .......................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{1}{4}, B = \frac{3}{4}\text{ and }C = - \frac{1}{2}\]

\[ \therefore \frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{1}{4 \left( x - 1 \right)} + \frac{3}{4 \left( x + 1 \right)} - \frac{1}{2 \left( x + 1 \right)^2}\]

\[ \Rightarrow I = \frac{1}{4}\int\frac{dx}{x - 1} + \frac{3}{4}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2}\]

\[ = \frac{1}{4} \log \left| x - 1 \right| + \frac{3}{4} \log \left| x + 1 \right| - \frac{1}{2} \times \frac{- 1}{x + 1} + C\]

\[ = \frac{1}{4}\log \left| x - 1 \right| + \frac{3}{4} \log \left| x + 1 \right| + \frac{1}{2 \left( x + 1 \right)} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 31 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×