English

∫ Sin X 3 + 4 Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

Options

  • log (3 + 4 cos2 x) + C

  • \[\frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{\cos x}{\sqrt{3}} \right) + C\]
  • \[- \frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
  • \[\frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
MCQ

Solution

\[- \frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
 
 
\[\text{Let }I = \int\frac{\sin x}{3 + 4 \cos^2 x}dx\]

\[\text{Putting }\cos x = t\]

\[ \Rightarrow - \sin x dx = dt\]

\[ \therefore I = \int\frac{- dt}{3 + 4 t^2}\]

\[ = \frac{1}{4}\int\frac{- dt}{t^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]

\[ = \frac{- 1}{4} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \left( \frac{t \times 2}{\sqrt{3}} \right) + C .............\left( \because \int\frac{1}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]

\[ = - \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{2 t}{\sqrt{3}} \right) + C\]

\[ = - \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C .............\left( \because t = \cos x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 19 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cos^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \log_{10} x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \tan x - \log \cos x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×