Advertisements
Advertisements
Question
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
Options
- \[- e^x \tan\frac{x}{2} + C\]
- \[- e^x \cot\frac{x}{2} + C\]
- \[- \frac{1}{2} e^x \tan\frac{x}{2} + C\]
- \[- \frac{1}{2} e^x \cot\frac{x}{2} + C\]
MCQ
Solution
\[- e^x \cot\frac{x}{2} + C\]
\[\text{Let }I = \int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2 \sin^2 \frac{x}{2}} - \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right)dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \Rightarrow \int e^x \left( \frac{1}{2 \sin^2 \frac{x}{2}} - \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right)dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = - e^x \cot \left( \frac{x}{2} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x e^x \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]