English

∫ 1 Sin 3 X Cos 5 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
Sum

Solution

\[\int\frac{dx}{\sin^3 x . \cos^5 x}dx\]
`  "Dividing  numerator  and denominator  by" cos^8 x  `
\[ = \int\frac{\frac{1}{\cos^8 x}dx}{\frac{\sin^3 x}{\cos^3 x}}\]
\[ = \int\frac{\sec^8 x}{\tan^3 x}dx\]
\[ = \int\frac{\sec^6 x . \sec^2 x dx}{\tan^3 x}\]
\[ = \int\frac{\left( 1 + \tan^2 x \right)^3 . \sec^2 x dx}{\tan^3 x}\]
\[Let \tan x = t\]
` ⇒  sec^2 x  dx  = dt `
\[Now, \int\frac{\left( 1 + \tan^2 x \right)^3 . \sec^2 x dx}{\tan^3 x}\]
\[ = \int\frac{\left( 1 + t^2 \right)^3}{t^3} . dt\]
\[ = \int\frac{1 + t^6 + 3 t^2 + 3 t^4}{t^3}dt\]
\[ = \int\left( \frac{1}{t^3} + t^3 + \frac{3}{t} + 3t \right)dt\]
\[ = \int t^{- 3} dt + \int t^3 dt + 3\int\frac{dt}{t} + 3\    ∫ t \text{ dt }\]
\[ = \left[ \frac{t^{- 3 + 1}}{- 3 + 1} \right] + \left[ \frac{t^{3 + 1}}{3 + 1} \right] + 3 \log \left| t \right| + \frac{3 t^2}{2} + C\]
\[ = - \frac{1}{2} \left( \tan x \right)^{- 2} + \frac{1}{4} \tan^4 x + 3 \log \left| \tan x \right| + \frac{3}{2} \tan^2 x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.12 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.12 | Q 11 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×