English

∫ Sin 3 X Cos 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \sin^3 x \cdot \cos^4 x\ dx\]
\[ = \int \sin^2 x \cdot \sin x \cdot \cos^4 x\ dx\]
\[ = \int\left( 1 - \cos^2 x \right) \cdot \cos^4 x \cdot \sin x\ dx \]
\[ = \int\left( \cos^4 x - \cos^6 x \right) \cdot \sin x\ dx\]
\[\text{  Putting  cos x = t}\]
\[ \Rightarrow - \sin x\ dx = dt\]
\[ \Rightarrow \sin x\ dx = - dt\]
\[ \therefore I = - \int\left( t^4 - t^6 \right)dt\]
\[ = \int\left( t^6 - t^4 \right)dt\]
\[ = \frac{t^7}{7} - \frac{t^5}{5} + C\]
\[ = \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + C......... \left[ \because t = \cos x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 37 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \tan^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×