Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int \sin^3 x \cdot \cos^4 x\ dx\]
\[ = \int \sin^2 x \cdot \sin x \cdot \cos^4 x\ dx\]
\[ = \int\left( 1 - \cos^2 x \right) \cdot \cos^4 x \cdot \sin x\ dx \]
\[ = \int\left( \cos^4 x - \cos^6 x \right) \cdot \sin x\ dx\]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \sin x\ dx = dt\]
\[ \Rightarrow \sin x\ dx = - dt\]
\[ \therefore I = - \int\left( t^4 - t^6 \right)dt\]
\[ = \int\left( t^6 - t^4 \right)dt\]
\[ = \frac{t^7}{7} - \frac{t^5}{5} + C\]
\[ = \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + C......... \left[ \because t = \cos x \right]\]
APPEARS IN
RELATED QUESTIONS
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to