Advertisements
Advertisements
Question
\[\int\frac{a}{b + c e^x} dx\]
Sum
Solution
\[\text{Let I} = \int\frac{a}{b + c e^x}dx\]
` "Dividing numerator and denominator by" e^x `
\[ \Rightarrow I = \int\frac{a e^{- x}}{b e^{- x} + c}dx\]
\[Putting\ e^{- x} = t\]
\[ \Rightarrow - e^{- x} = \frac{dt}{dx}\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int\frac{- a}{bt + c}dt\]
\[ = \frac{- a}{b} \text{ln }\left| bt + c \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln }\left| ax + b \right| + C \right]\]
\[ = \frac{- a}{b} \text{ln} \left| b e^{- x} + c \right| + C \left[ \because t = e^{- x} + C \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
`∫ cos ^4 2x dx `
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]