Advertisements
Advertisements
Question
Solution
\[\int\sqrt{3 x^2 + 4x + 1} \text{ dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}}\text{ dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{1}{3}} \text{ dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{1}{3}} \text{ dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \text{ dx }\]
\[ = \sqrt{3} \left[ \frac{1}{2}\left( x + \frac{2}{3} \right)\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} - \frac{1}{2} \times \left( \frac{1}{3} \right)^2 \text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \right| + C \right] ....................\left[ \because \int \sqrt{x^2 - a^2} dx = \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln
}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{1}{6}\left( 3x + 2 \right)\sqrt{3 x^2 + 4x + 1} - \frac{\sqrt{3}}{18}\text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}} \right| + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]