English

∫ √ 3 X 2 + 4 X + 1 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]
Sum

Solution

\[\int\sqrt{3 x^2 + 4x + 1} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}}\text{  dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{1}{3}} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{1}{3}} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \text{  dx }\]
\[ = \sqrt{3} \left[ \frac{1}{2}\left( x + \frac{2}{3} \right)\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} - \frac{1}{2} \times \left( \frac{1}{3} \right)^2 \text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \right| + C \right] ....................\left[ \because \int \sqrt{x^2 - a^2} dx = \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln 
}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{1}{6}\left( 3x + 2 \right)\sqrt{3 x^2 + 4x + 1} - \frac{\sqrt{3}}{18}\text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 87 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×