English

∫ Cos X ( 1 − Sin X ) 3 ( 2 + Sin X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
Sum

Solution

We have,
\[ I = \int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\text{Let, }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[\text{Now, integration becomes}, \]
\[I = \int\frac{dt}{\left( 1 - t \right)^3 \left( 2 + t \right)} \]
\[ = - \int\frac{dt}{\left( t - 1 \right)^3 \left( t + 2 \right)} \]
\[\text{Let, }\frac{1}{\left( t - 1 \right)^3 \left( t + 2 \right)} = \frac{A}{\left( t - 1 \right)} + \frac{B}{\left( t - 1 \right)^2} + \frac{C}{\left( t - 1 \right)^3} + \frac{D}{\left( t + 2 \right)} ................(1)\]
\[ \Rightarrow 1 = A \left( t - 1 \right)^2 \left( t + 2 \right) + B\left( t - 1 \right)\left( t + 2 \right) + C\left( t + 2 \right) + D \left( t - 1 \right)^3 ....................(2)\]

\[\text{Putting t = 1 in (2), we get}\]
\[1 = 3C\]
\[ \Rightarrow C = \frac{1}{3}\]
\[\text{Putting t = - 2 in (2), we get}\]
\[1 = D \left( - 2 - 1 \right)^3 \]
\[ \Rightarrow 1 = - 27D\]
\[ \Rightarrow D = \frac{- 1}{27}\]
\[\text{Putting t = 0 in (2), we get}\]
\[1 = 2A - 2B + 2C - D\]
\[ \Rightarrow 1 = 2A - 2B + \frac{2}{3} + \frac{1}{27}\]
\[ \Rightarrow 2A - 2B = \frac{8}{27}\]
\[ \Rightarrow A - B = \frac{4}{27}\]
\[\text{Putting t = 2 in (2), we get}\]
\[1 = 4A + 4B + 4C + D\]
\[ \Rightarrow 1 = 4A + 4B + \frac{4}{3} - \frac{1}{27}\]
\[ \Rightarrow A + B = - \frac{2}{27}\]
\[Now, A - B = \frac{4}{27}\text{ and }A + B = - \frac{2}{27} \Rightarrow A = \frac{1}{27}\text{ and }B = \frac{- 1}{9}\]

\[\text{Substituting the values of A, B, C and D in (1), we get}\]
\[\frac{1}{\left( t - 1 \right)^3 \left( t + 2 \right)} = \frac{1}{27\left( t - 1 \right)} - \frac{1}{9 \left( t - 1 \right)^2} + \frac{1}{3 \left( t - 1 \right)^3} + \frac{- 1}{27\left( t + 2 \right)}\]
\[\text{Now, integration becomes}\]
\[ I = - \int\left[ \frac{1}{27\left( t - 1 \right)} - \frac{1}{9 \left( t - 1 \right)^2} + \frac{1}{3 \left( t - 1 \right)^3} + \frac{- 1}{27\left( t + 2 \right)} \right]dt\]
\[ = - \left[ \frac{1}{27}\log \left| t - 1 \right| + \frac{1}{9\left( t - 1 \right)} - \frac{1}{6 \left( t - 1 \right)^2} - \frac{1}{27}\log \left| t + 2 \right| \right] + C\]
\[ = - \frac{1}{27}\log \left| \sin x - 1 \right| - \frac{1}{9\left( \sin x - 1 \right)} + \frac{1}{6 \left( \sin x - 1 \right)^2} + \frac{1}{27}\log \left| \sin x + 2 \right| + C\]
\[ = - \frac{1}{27}\log \left| 1 - \sin x \right| + \frac{1}{9\left( 1 - \sin x \right)} + \frac{1}{6 \left( 1 - \sin x \right)^2} + \frac{1}{27}\log \left| 2 + \sin x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 49 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×