Advertisements
Advertisements
Question
Solution
\[\text{ We have,} \]
\[I = \int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}\int\frac{1 + a - 1 - \sqrt{ax}}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}\int\frac{1 - \sqrt{ax}}{1 - \sqrt{ax}} dx + \frac{1}{\sqrt{a}}\int\frac{a - 1}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}\int dx + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx}\]
\[\text{ Let,} \]
\[ I_1 = \int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]
\[\text{ Put ax = z}^2 \]
\[ \Rightarrow adx = \text{ 2 }zdz\]
\[ I_1 = \frac{1}{a}\int\frac{2z}{1 - z}\text{ dz}\]
\[ I_1 = \frac{1}{a}\int\frac{2z - 2 + 2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{1}{a}\int\frac{2z - 2}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{- 2}{a}\int\frac{1 - z}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{- 2}{a}\int \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{- 2}{a}z - \frac{2}{a}\text{ log }\left| 1 - z \right| + C_1 \]
\[ I_1 = \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log}\left| 1 - \sqrt{ax} \right| + C_1 \]
\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\left( \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log }\left| 1 - \sqrt{ax} \right| \right) + C\]
Note: The answer in indefinite integration may vary depending on the integral constant.
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
Integrate the following integrals:
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
Evaluate the following integral:
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]