English

∫ √ a − √ X 1 − √ a X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]
Sum

Solution

\[\text{ We  have,} \]

\[I = \int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int\frac{1 + a - 1 - \sqrt{ax}}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int\frac{1 - \sqrt{ax}}{1 - \sqrt{ax}} dx + \frac{1}{\sqrt{a}}\int\frac{a - 1}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int dx + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx}\]

\[\text{ Let,} \]

\[ I_1 = \int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]

\[\text{ Put ax = z}^2 \]

\[ \Rightarrow adx = \text{ 2 }zdz\]

\[ I_1 = \frac{1}{a}\int\frac{2z}{1 - z}\text{  dz}\]

\[ I_1 = \frac{1}{a}\int\frac{2z - 2 + 2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{1}{a}\int\frac{2z - 2}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}\int\frac{1 - z}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}\int \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}z - \frac{2}{a}\text{ log }\left| 1 - z \right| + C_1 \]

\[ I_1 = \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log}\left| 1 - \sqrt{ax} \right| + C_1 \]

\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\left( \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log }\left| 1 - \sqrt{ax} \right| \right) + C\]

 

Note: The answer in indefinite integration may vary depending on the integral constant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 55 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×