Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 2}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]
\[ \Rightarrow 1 = A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)\]
Putting\ x - 1 = 0
\[ \Rightarrow x = 1\]
\[1 = A \left( 1 + 1 \right) \left( 1 + 2 \right) + B \times 0 + C \times 0\]
\[ \Rightarrow 1 = A \times 6\]
\[ \Rightarrow A = \frac{1}{6}\]
Putting x + 1 = 0
\[ \Rightarrow x = - 1\]
\[1 = A \times 0 + B \left( - 2 \right) \left( 1 \right) + C \times 0\]
\[ \Rightarrow B = - \frac{1}{2}\]
Putting x + 2 = 0
\[ \Rightarrow x = - 2\]
\[1 = A \times 0 + B \times 0 + C \left( - 2 - 1 \right) \left( - 2 + 1 \right)\]
\[ \Rightarrow 1 = C \times 3\]
\[ \Rightarrow C = \frac{1}{3}\]
\[ \therefore I = \frac{1}{6}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{3}\int\frac{dx}{x + 2}\]
\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{3} \log \left| x + 2 \right| + C\]
\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{3}{6} \log \left| x + 1 \right| + \frac{2}{6}\log \left| x + 2 \right| + C\]
\[ = \frac{1}{6} \left[ \log \left| x - 1 \right| - 3 \log \left| x + 1 \right| + 2 \log \left| x + 2 \right| \right] + C\]
\[ = \frac{1}{6}\log \left| \frac{\left( x - 1 \right) \left( x + 2 \right)^2}{\left( x + 1 \right)^3} \right| + C\]
APPEARS IN
RELATED QUESTIONS
`∫ cos ^4 2x dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int \left( e^x + 1 \right)^2 e^x dx\]