English

∫ 1 ( X − 1 ) ( X + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]

\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]

\[ \Rightarrow 1 = A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)\]

Putting\ x - 1 = 0

\[ \Rightarrow x = 1\]

\[1 = A \left( 1 + 1 \right) \left( 1 + 2 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow 1 = A \times 6\]

\[ \Rightarrow A = \frac{1}{6}\]

Putting x + 1 = 0

\[ \Rightarrow x = - 1\]

\[1 = A \times 0 + B \left( - 2 \right) \left( 1 \right) + C \times 0\]

\[ \Rightarrow B = - \frac{1}{2}\]

Putting x + 2 = 0

\[ \Rightarrow x = - 2\]

\[1 = A \times 0 + B \times 0 + C \left( - 2 - 1 \right) \left( - 2 + 1 \right)\]

\[ \Rightarrow 1 = C \times 3\]

\[ \Rightarrow C = \frac{1}{3}\]

\[ \therefore I = \frac{1}{6}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{3}\int\frac{dx}{x + 2}\]

\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{3} \log \left| x + 2 \right| + C\]

\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{3}{6} \log \left| x + 1 \right| + \frac{2}{6}\log \left| x + 2 \right| + C\]

\[ = \frac{1}{6} \left[ \log \left| x - 1 \right| - 3 \log \left| x + 1 \right| + 2 \log \left| x + 2 \right| \right] + C\]

\[ = \frac{1}{6}\log \left| \frac{\left( x - 1 \right) \left( x + 2 \right)^2}{\left( x + 1 \right)^3} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 17 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  sec^6   x  tan    x   dx `

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×