English

∫ 1 √ ( X − α ) ( β − X ) D X , ( β > α ) - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
Sum

Solution

\[\text{Let I } = \int\frac{dx}{\sqrt{\left( x - \alpha \right) \left( \beta - x \right)}}\]

\[ = \int\frac{dx}{\sqrt{\  β x - x^2 -  αβ+ α x }}\]

\[ = \int\frac{dx}{\sqrt{- x^2 + \left( \alpha + \beta \right) x - \alpha\beta}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x^2 - \left( \alpha + \beta \right) x + \alpha\beta \right]}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x^2 - \left( \alpha + \beta \right) x + \left( \frac{\alpha + \beta}{2} \right)^2 - \left( \frac{\alpha + \beta}{2} \right)^2 + \alpha\beta \right]}}\]

\[ = \int\frac{dx}{\sqrt{- \left\{ x - \left( \frac{\alpha + \beta}{2} \right) \right\}^2 + \left( \frac{\alpha + \beta}{2} \right)^2 - \alpha\beta}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x - \left( \frac{\alpha + \beta}{2} \right) \right]^2 + \frac{\left( \alpha + \beta \right)^2 - 4\alpha\beta}{4}}}\]

\[ = \int\frac{dx}{\sqrt{- \left[ x - \left( \frac{\alpha + \beta}{2} \right) \right]^2 + \left( \frac{\alpha - \beta}{2} \right)^2}}\]

\[ = \int\frac{dx}{\sqrt{\left( \frac{\alpha - \beta}{2} \right)^2 - \left( x - \left( \frac{\alpha + \beta}{2} \right) \right)^2}}\]

\[ = \sin^{- 1} \left[ \frac{x - \left( \frac{\alpha + \beta}{2} \right)}{\frac{\alpha - \beta}{2}} \right] + C\]

\[ = \sin^{- 1} \left( \frac{2x - \alpha - \beta}{\alpha - \beta} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.17 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.17 | Q 5 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \cot^4 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×