English

∫ 1 √ 3 X 2 + 5 X + 7 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{3 x^2 + 5x + 7}}\]
\[ = \int\frac{dx}{\sqrt{3\left( x^2 + \frac{5}{3}x + \frac{7}{3} \right)}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{x^2 + \frac{5}{3}x + \left( \frac{5}{6} \right)^2 - \left( \frac{5}{6} \right)^2 + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 - \frac{25}{36} + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{- 25 + 84}{36}}}\]


\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \left( \frac{\sqrt{59}}{36} \right)^2}}\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}} \right| + C\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{3}x + \frac{7}{3}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.17 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.17 | Q 4 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×