Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{\sqrt{3 x^2 + 5x + 7}}\]
\[ = \int\frac{dx}{\sqrt{3\left( x^2 + \frac{5}{3}x + \frac{7}{3} \right)}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{x^2 + \frac{5}{3}x + \left( \frac{5}{6} \right)^2 - \left( \frac{5}{6} \right)^2 + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 - \frac{25}{36} + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{- 25 + 84}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \left( \frac{\sqrt{59}}{36} \right)^2}}\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}} \right| + C\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{3}x + \frac{7}{3}} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
` = ∫ root (3){ cos^2 x} sin x dx `
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int \sec^4 x\ dx\]