Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
Sum
Solution
\[\int\frac{dx}{\sqrt{x} + x}\]
\[ = \int\frac{dx}{\sqrt{x} \left( 1 + \sqrt{x} \right)}\]
\[\text{Let 1 }+ \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int\frac{dx}{\sqrt{x} \left( 1 + \sqrt{x} \right)}\]
\[ = \int\frac{2dt}{t}\]
\[ = 2\int\frac{dt}{t}\]
\[ = \text{2 } \text{log} \left|\text{ t }\right| + C\]
\[ = \text{2 }\text{log }\left( 1 + \sqrt{x} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\ ∫ x \text{ e}^{x^2} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \tan^5 x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .