English

∫ 1 ( Sin X − 2 Cos X ) ( 2 Sin X + Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int \frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\left( \frac{\sin x - 2 \cos x}{\cos x} \right) \times \left( \frac{2 \sin x + \cos x}{\cos x} \right)}dx\]
\[ = \int \frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)}dx\]
\[\text{ Let tan x} = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \frac{dt}{\left( t - 2 \right) \left( 2t + 1 \right)}\]


\[ = \int \frac{dt}{2 t^2 + t - 4t - 2}\]
\[ = \int \frac{dt}{2 t^2 - 3t - 2}\]
\[ = \frac{1}{2}\int \frac{dt}{t^2 - \frac{3}{2}t - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ log } \left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5}\text{ ln } \left| \frac{\left( t - 2 \right)^2}{2t + 1} \right| + C\]
\[ = \frac{1}{5}\text{ln } \left| \frac{t - 2}{2t + 1} \right| + \frac{1}{5} \ln \left( 2 \right) + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{t - 2}{2t + 1} \right| + \text{ C where C} = C + \frac{1}{5}\ln \left( 2 \right)\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 7 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^3}{x - 2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \tan^3 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×