हिंदी

∫ 1 ( Sin X − 2 Cos X ) ( 2 Sin X + Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int \frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\left( \frac{\sin x - 2 \cos x}{\cos x} \right) \times \left( \frac{2 \sin x + \cos x}{\cos x} \right)}dx\]
\[ = \int \frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)}dx\]
\[\text{ Let tan x} = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \frac{dt}{\left( t - 2 \right) \left( 2t + 1 \right)}\]


\[ = \int \frac{dt}{2 t^2 + t - 4t - 2}\]
\[ = \int \frac{dt}{2 t^2 - 3t - 2}\]
\[ = \frac{1}{2}\int \frac{dt}{t^2 - \frac{3}{2}t - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ log } \left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5}\text{ ln } \left| \frac{\left( t - 2 \right)^2}{2t + 1} \right| + C\]
\[ = \frac{1}{5}\text{ln } \left| \frac{t - 2}{2t + 1} \right| + \frac{1}{5} \ln \left( 2 \right) + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{t - 2}{2t + 1} \right| + \text{ C where C} = C + \frac{1}{5}\ln \left( 2 \right)\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.22 | Q 7 | पृष्ठ ११४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \sin x \cos x\ dx\]

 


 
` ∫  x tan ^2 x dx 

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×