हिंदी

∫ E X ( Sin 4 X − 4 1 − Cos 4 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
योग

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{\sin4x - 4}{1 - \cos4x} \right]dx\]

\[ = \int e^x \left[ \frac{2\sin2x \cos2x}{2 \sin^2 (2x)} - \frac{4}{2 \sin^2 2x} \right]dx\]

\[ = \int e^x \left[ \cot(2x) - \text{ 2
}{cosec}^2 (2x) \right]dx\]

\[\text{ Here,} f(x) = \text
{ cot } (2x)\]

\[ \Rightarrow f'(x) = - \text{ 2 }{cosec}^2 (2x)\]

\[\text{ Put e}^x f(x) = t\]

\[\text{ let e }^x \text{ cot }( 2x) = t\]

\[\text{ Diff  both  sides w . r . t x}\]

\[ e^x \text{ cot (2x) } + e^x \times \left[ - \text{ 2  } {cosec}^\text{ 2 }(2x) \right] = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \cot(2x) -\text{  2 } {cosec}^\text{ 2 }(2x) \right]dx = dt\]

\[ \therefore \int e^x \left[ \cot 2x - \text{ 2 }{cosec}^2 \text{ 2x } \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = e^x \cot\left( \text{ 2x } \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 11 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×