Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]
\[Let, \log \left( 1 + \frac{1}{x} \right) = t\]
\[ \Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{- 1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \left( \frac{x}{x + 1} \right) \times \frac{- 1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{- dx}{x\left( x + 1 \right)} = dt\]
\[ \Rightarrow \frac{dx}{x\left( x + 1 \right)} = - dt\]
\[Now, \int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]
= ∫ t . (-dt)
\[ = \frac{- t^2}{2} + C\]
\[ = - \frac{1}{2} \left\{ \log\left( 1 + \frac{1}{x} \right) \right\}^2 + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
Evaluate the following integrals:
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
Write a value of
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .