हिंदी

∫ Log ( 1 + 1 X ) X ( 1 + X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
योग

उत्तर

\[\int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]

\[Let, \log \left( 1 + \frac{1}{x} \right) = t\]

\[ \Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{- 1}{x^2} = \frac{dt}{dx}\]

\[ \Rightarrow \left( \frac{x}{x + 1} \right) \times \frac{- 1}{x^2} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{- dx}{x\left( x + 1 \right)} = dt\]

\[ \Rightarrow \frac{dx}{x\left( x + 1 \right)} = - dt\]

\[Now, \int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]

= ∫ t   . (-dt)

\[ = \frac{- t^2}{2} + C\]

\[ = - \frac{1}{2} \left\{ \log\left( 1 + \frac{1}{x} \right) \right\}^2 + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 2 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^5 x \cos x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×