हिंदी

∫ sin x + cos x sin 4 x + cos 4 x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{\left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - 2 \sin^2 x \cos^2 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - \frac{1}{2} \left( 2\sin x \cos x \right)^2} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - \frac{1}{2} \sin^2 2x}\text{ dx }\]

\[\text{ Putting  sin x - cos x = t} . . . . . \left( 1 \right)\]
\[ \Rightarrow \left( \sin x - \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x - 2\sin x \cos x = t^2 \]
\[ \Rightarrow 1 - 2\sin x \cos x = t^2 \]
\[ \Rightarrow \sin 2x = 1 - t^2 \]
\[\text{Differentiating} \left( 1 \right), \text{we get}\]
\[\left( \cos x + \sin x \right)dx = \text{ dt }\]
\[ \therefore I = \int\frac{1}{1 - \frac{1}{2} \left( 1 - t^2 \right)^2}\text{  dt }\]
\[ = \int\frac{2}{2 - \left( 1 - t^2 \right)^2} \text{ dt }\]
\[ = \int\frac{2}{\left( \sqrt{2} \right)^2 - \left( 1 - t^2 \right)^2} \text{ dt }\]
\[ = 2\int\frac{1}{\left( \sqrt{2} + 1 - t^2 \right)\left( \sqrt{2} - 1 + t^2 \right)} \text{ dt}\]

\[= \frac{2}{2\sqrt{2}}\int\left[ \frac{1}{\sqrt{2} + 1 - t^2} + \frac{1}{\sqrt{2} - 1 + t^2} \right]\text{ dt}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2} + 1 - t^2} \text{ dt}+ \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2} - 1 + t^2} \text{ dt}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{1}{\left( \sqrt{\sqrt{2} + 1} \right)^2 - t^2} \text{ dt}+ \frac{1}{\sqrt{2}}\int\frac{1}{\left( \sqrt{\sqrt{2} - 1} \right)^2 + t^2} \text{ dt}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{2\sqrt{\sqrt{2} + 1}}\text{ log }\left| \frac{\sqrt{\sqrt{2} + 1} + t}{\sqrt{\sqrt{2} + 1} - t} \right| + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{\sqrt{2} + 1}} \tan^{- 1} \frac{t}{\sqrt{\sqrt{2} + 1}} + C\]
\[ = \frac{1}{\sqrt{2}}\left[ \frac{1}{2\sqrt{\sqrt{2} + 1}}\text{ log }\left| \frac{\sqrt{\sqrt{2} + 1} + t}{\sqrt{\sqrt{2} + 1} - t} \right| + \frac{1}{\sqrt{\sqrt{2} + 1}} \tan^{- 1} \frac{t}{\sqrt{\sqrt{2} + 1}} \right] + C, \text{ where t = sin x - cos x}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 107 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×