हिंदी

∫ 1 x √ 1 + x 3 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{x \sqrt{1 + x^3}}\]
\[ = \int\frac{x^2 dx}{x^3 \sqrt{1 + x^3}}\]
\[\text{ putting  x}^3 = t\]
\[ \Rightarrow \text{  3 x}^2 \text{ dx }= dt\]
\[ \Rightarrow x^2 dx = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dt}{t\sqrt{1 + t}}\]
\[\text{ let 1 + t = p}^2 \]
\[ \Rightarrow \text{ dt = 2p dp}\]
\[I = \frac{1}{3}\int\frac{\text{ 2p dp}}{\left( p^2 - 1 \right) \times p}\]
\[ = \frac{2}{3}\int\frac{dp}{p^2 - 1}\]
\[ = \frac{2}{3} \times \frac{1}{2} \text{ log} \left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{3}\text{ log }\left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{3}\text{ log} \left| \frac{\sqrt{1 + t} - 1}{\sqrt{1 + t} + 1} \right| + C\]
\[ = \frac{1}{3}\text{ log } \left| \frac{\sqrt{1 + x^3} - 1}{\sqrt{1 + x^3} + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 106 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×