Advertisements
Advertisements
प्रश्न
उत्तर
\[\int x^2 e^{- x} \text{ dx }\]
` " Taking x"^2" as the first function and e"^- x " as the second function ".`
\[ = x^2 \int e^{- x} dx - \int\left( \frac{d}{dx} x^2 \int e^{- x} dx \right)dx\]
\[ = - x^2 e^{- x} - \int2x\left( e^{- x} \right)\left( - 1 \right)dx\]
\[ = - x^2 e^{- x} + 2\int x e^{- x} dx\]
\[ = - x^2 e^{- x} + 2\left[ - x e^{- x} + \int e^{- x} dx \right]\]
\[ = - x^2 e^{- x} + 2\left[ - x e^{- x} - e^{- x} \right] + C\]
\[ = - e^{- x} \left[ x^2 + 2x + 2 \right] + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]