Advertisements
Advertisements
प्रश्न
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
विकल्प
ex cot x + C
−ex cot x + C
ex cosec x + C
−ex cosec x + C
MCQ
उत्तर
−ex cot x + C
\[\text{Let }I = \int e^x \left( 1 - \cot x + \cot^2 x \right)dx\]
\[ = \int e^x \left( {cosec}^2 x - \cot x \right)dx\]
\[\text{As we know that }\int e\left\{ f\left( x \right) + f' {}^x \left( x \right) \right\} = e^x f\left( x \right) + C\]
\[ \therefore I = - e^x \cot x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]