हिंदी

∫ E X ( 1 − Cot X + Cot 2 X ) D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

विकल्प

  •  ex cot x + C

  • ex cot x + C

  •  ex cosec x + C

  • ex cosec x + C

MCQ

उत्तर

ex cot x + 

\[\text{Let }I = \int e^x \left( 1 - \cot x + \cot^2 x \right)dx\]

\[ = \int e^x \left( {cosec}^2 x - \cot x \right)dx\]

\[\text{As we know that }\int e\left\{ f\left( x \right) + f' {}^x \left( x \right) \right\} = e^x f\left( x \right) + C\]

\[ \therefore I = - e^x \cot x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 14 | पृष्ठ २०१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×