हिंदी

∫ E X ( Log X + 1 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
योग

उत्तर

\[\text{ Let I }= \int e^x \left( \log x + \frac{1}{x} \right)dx\]

\[\text{ Here}, f(x) = \log x\]

\[ \Rightarrow f'(x) = \frac{1}{x}\]

\[\text{ put }\ e^x f(x) = t\]

\[ \Rightarrow e^x \log x = t\]

\[\text{ Diff  both sides   w . r . t x}\]

\[ e^x \log x + e^x \frac{1}{x} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left( \log x + \frac{1}{x} \right)dx = dt\]

\[ \therefore \int e^x \left[ \log  x + \frac{1}{x} \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = e^x \log x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 15 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int \tan^5 x\ dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \sec^6 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×