हिंदी

∫ √ C O S E C X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

`  ∫ \sqrt{"cosec x"- 1}  dx `
योग

उत्तर

`  ∫ \sqrt{"cosec x"- 1}  dx `
\[ = \int\sqrt{\frac{1}{\sin x} - 1}dx\]
\[ = \int\frac{\sqrt{1 - \sin x}}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\sqrt{\left( 1 - \sin x \right) \left( 1 + \sin x \right)}}{\sqrt{\sin x \left( 1 + \sin x \right)}}dx\]
\[ = \int\frac{\sqrt{1 - \sin^2 x}}{\sqrt{\sin^2 x + \ sinx}}dx\]
` ∫ {cos  x  dx}/{\sqrt{sin^2 x + sin x}}`
\[\text{Let sin x} = t\]
` ⇒ cos  x   dx = dt  `

Now, `∫  { cos  x  dx }/\sqrt {sin^2  x + sin x} `
\[ = \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ = \int\frac{dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \text{ log }\left| \left( t + \frac{1}{2} \right) + \sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]
\[ = \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t} \right| + C\]
\[ = \text{ log }\left| \sin x + \frac{1}{2} + \sqrt{\sin^2 x + \sin x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 16 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \log_{10} x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×