हिंदी

∫ 1 √ X + 3 − √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
योग

उत्तर

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

Rationalising the denominator

\[= \int\frac{\left( \sqrt{x + 3} + \sqrt{x + 2} \right)}{\left( \sqrt{x + 3} - \sqrt{x + 2} \right) \left( \sqrt{x + 3} + \sqrt{x + 2} \right)} dx\]
\[ = \int\left[ \frac{\left( x + 3 \right)^\frac{1}{2} + \left( x + 2 \right)^\frac{1}{2}}{\left( x + 3 \right) - \left( x + 2 \right)} \right]dx\]
\[ = \int\left[ \left( x + 3 \right)^\frac{1}{2} + \left( x + 2 \right)^\frac{1}{2} \right]dx\]
`= [ (x+3 )^{1/2+1} / {1/2+1 }    +   (x+2)^{1/2 + 1 } / {1/2+1}] + c`
\[ = \frac{2}{3} \left( x + 3 \right)^\frac{3}{2} + \frac{2}{3} \left( x + 2 \right)^\frac{3}{2} + C\]
\[ = \frac{2}{3}\left\{ \left( x + 3 \right)^\frac{3}{2} + \left( x + 2 \right)^\frac{3}{2} \right\} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 17 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\cos\sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×