हिंदी

∫ X 2 + 1 ( 2 X + 1 ) ( X 2 − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x^2 - 1 \right)}\]

\[ = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]

\[\text{Let }\frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{2x + 1} + \frac{B}{x - 1} + \frac{C}{x + 1}\]

\[ \Rightarrow \frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)\]

Putting `x - 1 = 0`

\[ \Rightarrow x = 1\]

\[1 + 1 = A \times 0 + B \left( 2 + 1 \right) \left( 1 + 1 \right) + C \times 0\]

\[ \Rightarrow 2 = B\left( 3 \right)\left( 2 \right)\]

\[ \Rightarrow B = \frac{1}{3}\]

Putting `x + 1 = 0`

\[ \Rightarrow x = - 1\]

\[1 + 1 = A \times 0 + B \times 0 + C \left( - 2 + 1 \right) \left( - 1 - 1 \right)\]

\[ \Rightarrow 2 = C \left( - 1 \right) \left( - 2 \right)\]

\[ \Rightarrow C = 1\]

Putting `2x + 1 = 0`

\[ \Rightarrow x = - \frac{1}{2}\]

\[ \left( - \frac{1}{2} \right)^2 + 1 = A \left( \frac{1}{4} - 1 \right)\]

\[ \Rightarrow \frac{1}{4} + 1 = A \left( - \frac{3}{4} \right)\]

\[ \Rightarrow \frac{5}{4} = A \left( - \frac{3}{4} \right)\]

\[A = - \frac{5}{3}\]

\[ \therefore I = - \frac{5}{3}\int\frac{dx}{2x + 1} + \frac{1}{3}\int\frac{dx}{x - 1} + \int\frac{dx}{x + 1}\]

\[ = - \frac{5}{3} \times \frac{\log \left| 2x + 1 \right|}{2} + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]

\[ = - \frac{5}{6} \log \left| 2x + 1 \right| + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 21 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \tan^3 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×