हिंदी

∫ 1 Sin 4 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
योग

उत्तर

\[\int\frac{dx}{\sin^4 x . \cos^2 x}\]
`  " Dividing   numerator  and denominator  " by   sin^2 x` 
\[ = \int\frac{\frac{1}{\sin^2 x}}{\sin^4 x . \cot^2 x}dx\]
\[ = \int\frac{{cosec}^6 x}{\cot^2}dx\]

 ` = ∫     { "cosec"^4  x   . "cosec"^2  x  dx}/cot^ 2 x `

` = ∫     { ("1  +cot"^2  x )^2  . "cosec"^2  x  dx}/cot^ 2 x `
\[Let \cot x = t\]
\[ \Rightarrow - {cosec}^2 x = \frac{dt}{dx}\]
\[ \Rightarrow - {cosec}^2 x \text{ dx } = dt\]
Now,` = ∫     { ("1  +cot"^2  x )^2  . "cosec"^2  x  dx}/cot^ 2 x `
\[ = \int \left( \frac{1 + t^2}{t} \right)^2 \left( - dt \right)\]
\[ = - \int\frac{\left( 1 + t^4 + 2 t^2 \right)}{t^2}dt\]
\[ = - \int\left( t^{- 2} + t^2 + 2 \right)dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \left[ - \frac{1}{t} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \frac{1}{3} t^3 - 2t + \frac{1}{t} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \frac{1}{\cot x} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \tan x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.12 | Q 10 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫      tan^5    x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int \log_{10} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×