Advertisements
Advertisements
प्रश्न
\[\int\frac{e^x}{1 + e^{2x}} dx\]
योग
उत्तर
\[\int\frac{e^x dx}{1 + e^{2x}}\]
\[\text{let }e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x dx}{1 + e^{2x}}\]
\[ = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( e^x \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
` ∫ x tan ^2 x dx
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]