हिंदी

∫ 1 E X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{e^x + 1} \text{ dx }\]
योग

उत्तर

\[\int\frac{1}{e^x + 1}dx . . . (1)\]

Multiplying numerator and Denominator of eq (1) by ex

\[\Rightarrow \int\frac{e^x \cdot dx}{e^x \left( e^x + 1 \right)}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow \int\frac{dt}{t \left( t + 1 \right)}\]
\[ \therefore \frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]
\[\frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + B t}{t \left( t + 1 \right)} . . . (2)\]
\[ \Rightarrow 1 = A \left( t + 1 \right) + B t\]
\[\text{ Putting  t } + 1\ = 0\text{ or}\, t\ = - 1\text{ in  eq  (2)  we  get}  , \]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{ Now , putting  t = 0  in  eq  (2) we get , } \]
\[ \Rightarrow 1 = A \left( 0 + 1 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[\text{ Putting  the  values  of  A  and  B  in eq (2) we  get } , \]
\[\frac{1}{t \left( t + 1 \right)} = \frac{1}{t} - \frac{1}{t + 1}\]
\[ \therefore \int\frac{dt}{t \left( t + 1 \right)} = \int\frac{dt}{t} - \int\frac{dt}{t + 1}\]
\[ = \text{ ln }\left| t \right| - \text{ ln }\left| t + 1 \right| + C\]
\[ = \text{ ln }\left| \frac{t}{t + 1} \right| + C\]
\[ = \text{ ln }\left| \frac{e^x}{e^x + 1} \right| + C\]
\[ = \text{ ln }e^x - \text{ ln }\left| e^x + 1 \right| + C\]
\[ = x - \text{ ln} \left| e^x + 1 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 16 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×