Advertisements
Advertisements
प्रश्न
Find: `int (3x +5)/(x^2+3x-18)dx.`
योग
उत्तर
Let `I = int ((3x+5))/(x^2 +3x -18)dx`
`I = int ((3x+5)dx)/((x+6) (x-3))`
let `(3x+5)/((x+6) (x-3)) = "A"/(x+6) + "B"/(x-3)`
so 3x + 5 = A (x -3) + B (x +6)
On comparing,
A + B = 3 ...(i)
-3A + 6B = 5 ...(ii)
-3A + 6(3 - A) = 5
-3A + 18 - 6A = 5
`"A" = -13/-9 = 13/9 and "B" = 3 - "A" = 3 - 13/9 = 14/9`
So, `int ((3x+5)dx)/((x+6)(x-3)) = int (13dx)/(9(x+6)) + int(14dx)/(9(x-3))`
= `13/9 "In" (x+6)+14/9"In"(x-3) + "C"`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]