Advertisements
Advertisements
प्रश्न
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
योग
उत्तर
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\text{Let} \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
Now,` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[ = \int e^\text{m t} \cdot dt\]
\[ = \frac{e^{mt}}{m} + C\]
` ∫ e^{m sin ^-1 x}/m } ` dx
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \cot^5 x\ dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]