हिंदी

∫ E 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^{2x}}{1 + e^x} dx\]
योग

उत्तर

\[\int\frac{e^{2x} dx}{1 + e^x}\]
\[ \Rightarrow \int\frac{e^x . e^x}{1 + e^x}dx\]
\[\text{Let 1 }+ e^x = t \]
\[ \Rightarrow e^x = t - 1\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x . e^x}{1 + e^x}dx\]
\[ = \int \frac{\left( t - 1 \right) . dt}{t}\]
\[ = \left( 1 - \frac{1}{t} \right)dt\]
\[ = t - \text{log }\left| t \right| + C\]
\[ = \left( 1 + e^x \right) - \log \left( 1 + e^x \right) + C\]
\[\text{Let C }+ 1 = C'\]
\[ = e^x - \text{log} \left( \text{1 + e}^x \right) + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 60 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×