हिंदी

∫ Cos X − Sin X 1 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
योग

उत्तर

\[\int\left( \frac{\cos x - \sin x}{1 + \sin \left( 2x \right)} \right)dx\]
\[ \Rightarrow \int\left( \frac{\cos x - \sin x}{\cos^2 x + \sin^2 x + 2 \sin x . \cos x} \right)dx\]
\[ \Rightarrow \int\frac{\left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)^2}dx\]
\[Let \cos x + \sin x = t\]
\[ \Rightarrow \left( - \sin x + \cos x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + \cos x \right) dx = dt\]
\[Now, \int\frac{\left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)^2}dx\]
\[ = \int\frac{dt}{t^2}\]
\[ = \int t^{- 2} dt\]
\[ = \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{- 1}{t} + C\]
\[ = - \frac{1}{\sin x + \cos x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 26 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫   tan   x   sec^4  x   dx  `


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×