Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\left( 1 + \cos x \right)}{\left( x + \sin x \right)^3}dx\]
\[\text{Let x} + \sin x = t\]
\[ \Rightarrow \left( 1 + \cos x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \cos x \right) dx = dt\]
\[Now, \int\frac{\left( 1 + \cos x \right)}{\left( x + \sin x \right)^3}dx\]
\[ = \int\frac{dt}{t^3}\]
\[ = \int t^{- 3} dt\]
\[ = \frac{t^{- 3 + 1}}{- 3 + 1} + C\]
\[ = \frac{- 1}{2 t^2} + C\]
\[ = \frac{- 1}{\text{2} \left( x + \sin x \right)^2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1 xe^x dx = 1`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.