Advertisements
Advertisements
प्रश्न
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
विकल्प
`"a"/2`
`"a"/2 int_0^"a" "f"(x)"d"x`
`int_0^"a" "f"(x)"d"x`
`"a" int_0^"a" "f"(x)"d"x`
उत्तर
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to `"a"/2 int_0^"a" "f"(x)"d"x`.
Explanation:
Since I = `int_0^"a" "f"(x) * "g"(x)"d"x`
= `int_0^"a" "f"("a" - x) "g"("a" - x)"d"x`
= `int_0^"a" "f"(x)("a" - "g"(x))"d"x`
= `"a" int_0^"a" "f"(x) "d"x - int_0^"a" "f"(x) * "g"(x)"d"x`
= `"a" int_0^"a" "f"(x)"d"x - 1`
or 1 = `"a"/2 int_0^"a" "f"(x)"d"x`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Evaluate the following integral:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is