Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\sin^3 x}{\sqrt{\cos x}}dx\]
\[ = \int\left( \frac{\sin^2 x \cdot \sin x}{\sqrt{\cos x}} \right) dx\]
\[ = \int\frac{\left( 1 - \cos^2 x \right) \sin x}{\sqrt{\cos x}}dx\]
\[Let \cos x = t\]
\[ \Rightarrow - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin x dx} = - dt\]
\[Now, \int\frac{\left( 1 - \cos^2 x \right)\sin x}{\sqrt{\cos x}}dx\]
\[ = - \int\frac{\left( 1 - t^2 \right)}{\sqrt{t}}dt\]
\[ = \int\left( \frac{t^2 - 1}{\sqrt{t}} \right)dt\]
\[ = \int\left( t^\frac{3}{2} - t^{- \frac{1}{2}} \right)dt\]
\[ = \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{5} t^\frac{5}{2} - 2\sqrt{t} + C\]
\[ = \frac{2}{5} \text{cos}^\frac{5}{2} x - 2 \sqrt{\cos x} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to