हिंदी

∫ Sin 3 X √ Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]
योग

उत्तर

\[\int\frac{\sin^3 x}{\sqrt{\cos x}}dx\]
\[ = \int\left( \frac{\sin^2 x \cdot \sin x}{\sqrt{\cos x}} \right) dx\]
\[ = \int\frac{\left( 1 - \cos^2 x \right) \sin x}{\sqrt{\cos x}}dx\]
\[Let \cos x = t\]
\[ \Rightarrow - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin x dx} = - dt\]
\[Now, \int\frac{\left( 1 - \cos^2 x \right)\sin x}{\sqrt{\cos x}}dx\]
\[ = - \int\frac{\left( 1 - t^2 \right)}{\sqrt{t}}dt\]
\[ = \int\left( \frac{t^2 - 1}{\sqrt{t}} \right)dt\]
\[ = \int\left( t^\frac{3}{2} - t^{- \frac{1}{2}} \right)dt\]
\[ = \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{5} t^\frac{5}{2} - 2\sqrt{t} + C\]
\[ = \frac{2}{5} \text{cos}^\frac{5}{2} x - 2 \sqrt{\cos x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 14 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×