हिंदी

∫ 1 X 2 Cos 2 ( 1 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]
योग

उत्तर

\[\int\frac{1}{x^2} \cdot \cos^2 \left( \frac{1}{x} \right) dx\]
\[\text{Let }\frac{1}{x} = t\]
\[ \Rightarrow - \frac{1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{x^2}dx = - dt\]
\[Now, \int\frac{1}{x^2} \cdot \cos^2 \left( \frac{1}{x} \right) dx\]
\[ = - \int \cos^2 t dt\]
\[ = - \int\left( \frac{1 + \cos 2t}{2} \right)dt\]
\[ = - \frac{1}{2}\int\left( 1 + \cos 2t \right)dt\]
\[ = - \frac{1}{2}\left[ t + \frac{\sin 2t}{2} \right] + C\]
\[ = - \frac{1}{2}\left[ \frac{1}{x} + \frac{\sin \left( \frac{2}{x} \right)}{2} \right] + C\]

` = -1/2 (1/x) - 1/4sin  (2/x) + C `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 43 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×