Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{x^2} \cdot \cos^2 \left( \frac{1}{x} \right) dx\]
\[\text{Let }\frac{1}{x} = t\]
\[ \Rightarrow - \frac{1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{x^2}dx = - dt\]
\[Now, \int\frac{1}{x^2} \cdot \cos^2 \left( \frac{1}{x} \right) dx\]
\[ = - \int \cos^2 t dt\]
\[ = - \int\left( \frac{1 + \cos 2t}{2} \right)dt\]
\[ = - \frac{1}{2}\int\left( 1 + \cos 2t \right)dt\]
\[ = - \frac{1}{2}\left[ t + \frac{\sin 2t}{2} \right] + C\]
\[ = - \frac{1}{2}\left[ \frac{1}{x} + \frac{\sin \left( \frac{2}{x} \right)}{2} \right] + C\]
` = -1/2 (1/x) - 1/4sin (2/x) + C `
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`