Advertisements
Advertisements
Question
Solution
\[\int\frac{1}{x^2} \cdot \cos^2 \left( \frac{1}{x} \right) dx\]
\[\text{Let }\frac{1}{x} = t\]
\[ \Rightarrow - \frac{1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{x^2}dx = - dt\]
\[Now, \int\frac{1}{x^2} \cdot \cos^2 \left( \frac{1}{x} \right) dx\]
\[ = - \int \cos^2 t dt\]
\[ = - \int\left( \frac{1 + \cos 2t}{2} \right)dt\]
\[ = - \frac{1}{2}\int\left( 1 + \cos 2t \right)dt\]
\[ = - \frac{1}{2}\left[ t + \frac{\sin 2t}{2} \right] + C\]
\[ = - \frac{1}{2}\left[ \frac{1}{x} + \frac{\sin \left( \frac{2}{x} \right)}{2} \right] + C\]
` = -1/2 (1/x) - 1/4sin (2/x) + C `
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integral:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is