Advertisements
Advertisements
Question
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Solution
Let `I = int_(pi/6)^(pi/3) (sin x + cos x)/sqrt(sin 2x)`dx
`= int_(pi/6)^(pi/3) (sin x + cos x)/sqrt(1 - (1 - sin 2x))`dx
`= int_(pi/6)^(pi/3) (sin x + cos x)/sqrt(1 - (sin x - cos x)^2)`dx
Put sin x - cos x = t
(cos x + sin x) dx = dt
When `x = pi/6, t = sin pi/6 - cos pi/6`
`= 1/2 - sqrt3/2`
`= (sqrt3 - 1)/2`
When x = `pi/3, t = sin = pi/3 - cos pi/3`
`= sqrt3/2 - 1/2`
`(sqrt3 - 1)/2`
∴ `I = int_(1/2 - sqrt3/2)^(sqrt3/2-1/2) dt/sqrt(1-t^2) = [sin^-1 t]_(1/2-sqrt3/2)^(sqrt3/2-1/2)`
`= sin^-1(sqrt3/2 - 1/2) - sin^-1 (1/2 - sqrt3/2)`
`= sin^-1 (sqrt3/2 - 1/2) + sin^-1 (sqrt3/2 - 1/2)`
`= 2 sin^-1 1/2 (sqrt3 - 1)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.