English

Prove the following: ∫13dxx2(x+1)=23+log 23 - Mathematics

Advertisements
Advertisements

Question

Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`

Sum

Solution

Let `I = int_1^3 dx/(x^2 (x + 1))`

Now, `1/(x^2 (x + 1)) = A/x + B/x^2 + C/(x + 1)`

∴ 1 ≡ Ax (x + 1) + B(x + 1) + Cx2                ....(i)

Putting x = 0 in (i), we get

1 = B (0 + 1)

⇒ B = 1

Putting x = -1 in (i), we get

= C (-1)2

⇒ C = 1

Comparing coefficients of x2 on the sides of (i), we get

∴ 0 = A + C

∴ A = - C = - 1

⇒ A = -1

∴ `1/(x^2 (x + 1)) = (- 1)/x + 1/x^2 + 1/(x + 1)`

∴ `int_1^3 1/(x^2 (x + 1))`dx

`= - int_1^3 1/x "dx" + int_1^3 1/x^2 "dx" + int_1^3 1/(x + 1)`dx

`= [- log |x| + x^-1/-1 + log |x + 1|]_1^3`

`= [- 1/x + log |(x + 1)/x|]_1^3 = (-1/3 + 1) + log  4/3 - log 2`

`= 2/3 + log (4/3 xx 1/2)`

`= 2/3 + log  2/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.12 [Page 353]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.12 | Q 34 | Page 353

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×