Advertisements
Advertisements
Question
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Solution
Let `I = int_1^3 dx/(x^2 (x + 1))`
Now, `1/(x^2 (x + 1)) = A/x + B/x^2 + C/(x + 1)`
∴ 1 ≡ Ax (x + 1) + B(x + 1) + Cx2 ....(i)
Putting x = 0 in (i), we get
1 = B (0 + 1)
⇒ B = 1
Putting x = -1 in (i), we get
= C (-1)2
⇒ C = 1
Comparing coefficients of x2 on the sides of (i), we get
∴ 0 = A + C
∴ A = - C = - 1
⇒ A = -1
∴ `1/(x^2 (x + 1)) = (- 1)/x + 1/x^2 + 1/(x + 1)`
∴ `int_1^3 1/(x^2 (x + 1))`dx
`= - int_1^3 1/x "dx" + int_1^3 1/x^2 "dx" + int_1^3 1/(x + 1)`dx
`= [- log |x| + x^-1/-1 + log |x + 1|]_1^3`
`= [- 1/x + log |(x + 1)/x|]_1^3 = (-1/3 + 1) + log 4/3 - log 2`
`= 2/3 + log (4/3 xx 1/2)`
`= 2/3 + log 2/3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integral:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.