English

∫ X 3 Sin ( X 4 + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]
Sum

Solution

\[\int x^3 \cdot \sin \left( x^4 + 1 \right) dx\]
\[\text{Let x}^4 + 1 = t\]
\[ \Rightarrow 4 x^3 = \frac{dt}{dx}\]
\[ \Rightarrow x^3 \text{dx} = \frac{dt}{4}\]
\[Now, \int x^3 \cdot \sin \left( x^4 + 1 \right) dx\]
\[ = \frac{1}{4}\int\sin \left( t \right) dt\]
\[ = \frac{1}{4}\left[ - \cos t \right] + C\]
\[ = \frac{1}{4}\left[ - \cos \left( x^4 + 1 \right) \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 36 | Page 58

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×