English

Evaluate the following: d∫0πxsinxcos2xdx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`

Sum

Solution

Let I = `int_0^pi x sin x cos^2x "d"x`  ....(i)

I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`

I = `int_0^pi (pi - x) sin x cos^2x "d"x`  .....(ii)

Adding (i) and (ii) we get,

2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`

2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`

2I = `int__0^pi pi sin x cos^2x "d"x`

= `pi int_0^pi sin x cos^2x "d"x`

Put cos x = t

⇒ – sin x dx = dt

⇒ sin x dx = – dt

Changing the limits, we have

When x = 0 

t = cos 0 = 1

When x = `pi` 

= cos `pi` = – 1

2I = `pi int_1^(-1) - "t"^2 "dt"`

= `- pi int_1^(-1) "t"^2 "dt"`

2I = `pi int_(-1)^1 "t"^2 "dt"`  ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`

2I = `pi["t"^3/3]_(-1)^1`

= `pi[1/3 + 1/3]`

= `pi(2/3)`

∴ I = `pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 33 | Page 165

RELATED QUESTIONS

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×