Advertisements
Advertisements
Question
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Solution
Let I = `int_0^pi x sin x cos^2x "d"x` ....(i)
I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`
I = `int_0^pi (pi - x) sin x cos^2x "d"x` .....(ii)
Adding (i) and (ii) we get,
2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`
2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`
2I = `int__0^pi pi sin x cos^2x "d"x`
= `pi int_0^pi sin x cos^2x "d"x`
Put cos x = t
⇒ – sin x dx = dt
⇒ sin x dx = – dt
Changing the limits, we have
When x = 0
t = cos 0 = 1
When x = `pi`
= cos `pi` = – 1
2I = `pi int_1^(-1) - "t"^2 "dt"`
= `- pi int_1^(-1) "t"^2 "dt"`
2I = `pi int_(-1)^1 "t"^2 "dt"` ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`
2I = `pi["t"^3/3]_(-1)^1`
= `pi[1/3 + 1/3]`
= `pi(2/3)`
∴ I = `pi/3`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.