English

Evaluate the following: d∫01xdx1+x2 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`

Sum

Solution

Let I = `int_0^1 (x"d"x)/sqrt(1 + x^2)`

Put 1 + x2 = t

⇒ 2x dx = dt

⇒ x dx = `"dt"/2`

Changing the limits, we have

When x = 0

∴ t = 1

When x = 1

∴ t = 2

∴ I = `1/2 int_1^2 "dt"/sqrt("t")`

= `1/2 * 2["t"^(1/2)]_1^2`

= `sqrt(2) - 1`

Hence, I =  `sqrt(2) - 1`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 32 | Page 165

RELATED QUESTIONS

Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×