English

Evaluate d∫-12(7x-5)dx as a limit of sums - Mathematics

Advertisements
Advertisements

Question

Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums

Sum

Solution

Here a = –1

b = 2

And h = `(2 + 1)/"n"`

i.e, nh = 3 and f(x) = 7x – 5.

Now, we have

`int_(-1)^2 (7x - 5)"d"x = lim_("k" -> 0) "h"["f"(-1) + "f"(-1 + "h") + "f"(-1 + 2"h") + ... + (-1 + ("n" - 1)"h")]`

Note that

f(–1) = –7 – 5 = –12

f(–1 + h) = –7 + 7h – 5 = –12 + 7h

f(–1 + (n –1)h) = 7 (n – 1)h – 12.

Therefore, `int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"[(-12) + (7"h" - 12) + (14"h" - 12) + ... + (7("n" - 1)"h" - 12)]`

= `lim_("h" -> 0) "h"[7"h"[1 + 2 + ... +("n" - 1)] - 12"n"]`

= `lim_("h" -> 0) "h"[7"h" (("n" - 1)"n")/2 - 12 "n"]`

= `lim_("h" -> 0) [7/2("nh")("nh" - "h") - 12"nh"]`

= `7/2(3 - 0) - 12 xx 3`

= `(7 xx 9)/2 - 36`

= `(-9)/2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 150]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 9 | Page 150

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×