English

Evaluate the following: md∫0π2tanx1+m2tan2xdx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`

Sum

Solution

Let I = `int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`

= `int_0^(pi/2) (sinx/cosx)/(1 + "m"^2 (sin^2x)/(cos^2x)) "d"x`

= `int_0^(pi/2) (sinx/cosx)/((cos^2x + "m"^2 sin^2x)/cos^2x) "d"x`

= `int_0^(pi/2) (sin x cos x)/(cos^2x + "m"^2 sin^2x) "d"x`

= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x + "m"^2 sin^2x) "d"x`

= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x (1 - "m"^2)) "d"x`

Put sin2x = t

2 sin x cos x dx = dt

sin x cos x dx = `"dt"//2`

Changing the limits we get,

When x = 0

∴ t = sin20 = 0

When x = `pi/2`

∴ t = `sin^2  pi/2` = 1

∴ I = `1/2 int_0^1  "dt"/(1 - (1 - "m"^2)"t")`

I = `1/2 int_0^1 "dt"/(1 + ("m"^2 - 1)"t")`

= `1/2 [(log [1 + "m"^2 - 1)"t")/("m"^2 - 1)]_0^1`

= `1/(2("m"^2 - 1)) [log(1 + "m"^2 - 1) - log(1)]`

= `(log|"m"^2|)/(2("m"^2 - 1))`

Hence, I = `(log|"m"^2|)/(2("m"^2 - 1)) = (log|"m"|)/("m"^2 - 1)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 30 | Page 165

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×