English

Π ∫ 0 Sin X Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Solution

\[\int_0^\pi \frac{\sin x}{\sin x + \cos x} d x\]
\[ = \frac{1}{2} \int_0^\pi \frac{2\sin x}{\sin x + \cos x} d x\]
\[ = \frac{1}{2} \int_0^\pi \frac{\left( \sin x + \cos x \right) - \left( \cos x - \sin x \right)}{\sin x + \cos x} d x\]
\[ = \frac{1}{2} \int_0^\pi dx - \frac{1}{2} \int_0^\pi \frac{\cos x - \sin x}{\sin x + \cos x}dx\]
\[ = \frac{1}{2} \left[ x \right]_0^\pi - \frac{1}{2} \left[ \log\left| \sin x + \cos x \right| \right]_0^\pi \]
\[ = \frac{1}{2}\left[ \pi - 0 \right] - \frac{1}{2}\left[ \log1 - \log1 \right]\]
\[ = \frac{\pi}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 21 | Page 39

RELATED QUESTIONS

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


`int dx/(e^x + e^(-x))` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×